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Extended Abstract
Motivation Automated decision-making processes that use machine learning algorithms have
become widespread, but researchers have found that these systems often perpetuate or even in-
troduce biases. Efforts have been made to mitigate these biases using fairness criteria [1–3].
However, these solutions are designed for stationary systems [4, 5] which are often not effective
in the long term [6, 7] due to the feedback loops created by the decision-making process [4, 8–
16]. To design effective long-term bias mitigation techniques, an interdisciplinary approach is
needed to understand the role of feedback loops in perpetuating and amplifying biases.

Contributions Our main contribution consists of rigorously analyzing the ML-based decision-
making pipeline and establishing a classification of distinct types of feedback loops. To do so,
we represent the typical ML-based decision-making pipeline as a block diagram composed of
different sub-systems: the individuals’ sampling process s, the individual i’s unobservable char-
acteristics representing the decision-relevant construct θ , the observed features x and outcomes
y, the ML model f (producing a prediction ŷ for i), and the final decision d. The final decision
can feed back into any of the other sub-systems, thus forming different types of feedback loops
(see Fig. 1): A sampling feedback loop comprises the effects of the decision on the probability
certain types of individuals enter the decision-making pipeline (e.g., apply for a loan). An indi-
vidual feedback loop is present if the decision acts directly on the individual’s characteristics.
In contrast to the individual feedback loop, in a feature feedback loop the decision affects the
observable characteristics of the individual (e.g., the credit score) rather than the actual ones
(likelihood of repaying a loan). In an ML model feedback loop, the decision affects the ML
model by modifying the training data set that will be used for future predictions (the outcome
is realized and added to the training data set only for positive decisions). Finally, in an outcome
feedback loop, the decision affects the outcome before it is realized and ultimately observed
(e.g., a loan given at a higher interest rate increases the probability of defaulting). Notice that
this observed outcome then needs to be reused in some form (e.g., as part of the training or
validation data when retraining the model) in order to close the loop. Notice that some feed-
back loops can be classified as adversarial whenever the decision feeds back into the system
involving some strategic action of the affected individual(s).

Furthermore, we associate the different types of feedback loops with the biases they affect
(see Table 1). Sampling and ML model feedback loops can change the representation of the
training or evaluation sample dataset compared to the target population, thus leading to rep-
resentation bias. An individual feedback loop can cause life bias by changing an individual’s
decision-relevant (though, often unobservable) attributes. In contrast, feature and outcome
feedback loops act on the extraction and realization of those attributes, which can affect the
measurement bias of the observable attributes. We find that the existence of feedback loops in
the ML-based decision-making pipeline can perpetuate, reinforce, or even reduce ML biases.
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Case study We demonstrate the connection between feedback loops and biases with a uni-
fying case study on recommender systems (RS) used by online platforms to provide content
users are interested in. Specifically, in our example, the platform needs to decide whether or
not to recommend a given item to users, and the users are split into two groups a ∈ {G1,G2}.
In Figure 2, we provide one example for each of the five types of feedback loops to illustrate
how they are associated with different biases. As can be seen in Fig. 2a, a sampling feedback
loop phenomenon leads to the reduction of G2 users on the platform. Therefore, G2 is un-
derrepresented on the platform in the long term, with just 8.9% of the platform users. Also,
the interest of users remaining on the platform is not biased (see Fig. 2b). Fig. 2c shows that
an individual feedback loop results in a polarization of interests on the platform: users with
high initial interest are more likely to be recommended the item and, as a result of this, their
interest further increases over time, and vice versa for users with low initial interest. As shown
in Fig. 2d, a feature feedback loop reduces the measurement error (which can be seen by the
reduced variance) and the measurement bias of G2’s clicking history over time. Fig. 2e shows
the results of a ML model feedback loop: the ML model improves quickly for G1 but not for G2
(as visualized with the reduction of prediction errors over time in Fig. 2f). From the standpoint
of the platform’s users, an outcome feedback loop can create a scenario where they continue
to receive recommendations based on their past clicks on similar content, even if they are not
interested in it (anymore) – see outcome realizations and the shift of the prediction model in
Fig. 2g. This increases the prediction error (w.r.t. the true interest) over time (see Fig. 2h).

Potential impact By rigorously analyzing the ML pipeline, we believe that our framework is
a necessary first step toward understanding the exact role of the feedback loops in it. Providing
a rigorous classification of feedback loops will enable a deeper understanding of the existing
works in the ML literature, and it will allow putting their results into the perspective of their
assumptions (e.g., which types of feedback loops are considered and which are not). We believe
that our framework will be helpful for the purposeful design of feedback loops [9, 13], and for
the development of long-term bias and unfairness mitigation techniques [1–3].
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Figure 1: The ML-based decision-making pipeline as a closed-loop system in which different feedback
loops can emerge. At the beginning of the pipeline, an individual i is sampled from the world (i.e., the
environment) I , through the function s : I → i. Let i be the individual’s identity and let g : i → θ be a
function that returns the individual’s attributes relevant for prediction. The features x, extracted through
the function r : θ → x,a, and the outcome y (also called label or target), realized through the function
t : θ → y, are imperfect proxies that can be measured. For instance, y can represent whether or not an
individual repays a granted loan and x is a set of features that are used by the decision-maker to predict
the repayment probability ŷ. For each sampled individual, the final decision d (e.g., whether to grant
the loan or not) is informed by the prediction ŷ, which is produced based on the observed features x to
approximate y using a learned function f : x → ŷ. Once the outcome is observed, i.e., after one time-unit
of delay, the past time’s feature label pair (x̃, ỹ) can end up as a sample in the dataset (X ,Y ) that is used
to (re)train and (re)evaluate an ML model. In fully-automated decision-making systems, the decision
rule h is solely based on the prediction (h : ŷ → d), usually taking the form of a simple threshold rule,
e.g., d = 1 if and only if ŷ ≥ ȳ. The symbol a indicates the sensitive attribute of the individual (e.g., race
or gender) and can possibly also be incorporated in the features x. Notice that d does not always directly
follow from ŷ. For example, efforts to ensure group fairness usually consider the group membership a.

Table 1: Feedback loops and the ML biases they affect

Feedback loop ML bias
Sampling, ML model Representation bias
Individual Life bias
Feature, Outcome Measurement bias
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(a) Platform’s groups cardinalities under a sam-
pling FL: nG2 decreases from 504 to 89 individuals
after 10,000 time-steps. This distribution persists
in future time-steps, suggesting that it is a (locally)
stable equilibrium point of the dynamical system.
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(b) Biased interests of platform users under a Sam-
pling FL: since only those given d = 1 stay on the
platform, the sample of active users becomes less
representative over time, i.e., only interested users
(those with high values for θ ) stay on the platform.
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(c) Interests of platform users under an individual
FL: Due to the difference in the two groups’ initial
distributions of θ , the polarization increases life
bias. Namely, it results in even bigger group-level
disparities with a very high θ for group 1 users and
a very low θ for group 2 users, on average.
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(d) Measurement error (x−θ) under a feature FL:
this results in a reduction of the measurement error
(which can be seen by the reduced variance) and
the measurement bias of G2 over time, i.e., x−θ ∼
0 after 50,000 time-steps.
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(e) Initial distribution of (X ,Y ), initial/final predic-
tors, and outcome realization t under an ML model
FL: Starting with an initial prediction of ŷ = 0.5
for all, the model is retrained with newly observed
data and becomes more accurate over time.
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(f) Prediction error (ŷ−E[y]) under an ML model
FL: The prediction error quickly approaches 0 for
G1, but the logistic regression algorithm continues
to perform poorly for G2 in the short to medium
term.
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(g) Initial distribution of (X ,Y ), initial/final predic-
tors, and initial/final outcome realization t under an
outcome FL: This introduces a measurement bias
on the realized outcome y for both groups G1 and
G2, meaning that the realized outcomes t(θ ,d) are
more extreme than they would be if there were no
outcome feedback loop (see dashed lines).
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(h) Prediction error with respect to the true, unob-
served individual characteristics (ŷ−θ) under an
outcome FL: The prediction error ŷ − θ diverges
from 0 (as ŷ predicts the realized outcome y and
not θ ) until it reaches a stable equilibrium point
after approximately 10,000 time-steps (at approxi-
mately 0.2 and -0.2 for G1 and G2).

Figure 2: Dynamic effects of different feedback loops (FL) acting on an RS pipeline for an online
platform. For simplicity, we consider one relevant item (e.g., a specific video) and denote a user’s interest
in this item with θ ∈ [0,1], where a larger θ corresponds to a higher interest. The realized outcome y
denotes whether a user shows interest (e.g., clicks on the relevant item in question) or not. The platform’s
RS predicts a user’s interest ŷ = f (x) using a logistic regression, where the feature x ∈ [0,1] represents
a user’s past clicking behavior. For this simple example, x is the percentage of recommended relevant
items that the user has clicked on in the past and thus serves as a proxy of the user’s interest in the
relevant item.
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