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Abstract: User-Generated Content (UGC) is a fundamental feature of many of today’s most
used online social networks such as Instagram, YouTube, Twitter, or Twitch. Through the
integrated search engines, users can explore the content of their peers, and those that produce
higher quality UGC can attract more followers. Inspired by a meritocratic principle, we propose a
novel network formation model for directed online social networks, in which actors continuously
search for the best UGC provider. We theoretically and numerically analyze the properties of
the resulting networks. Among other realistic network features, we found that the in-degree
follows a Zipf’s law with respect to the UGC quality-ranking. Furthermore, the result is robust
against the effect of the recommendation systems. This extended abstract is based on Pagan

et al. (2021).
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1. INTRODUCTION

Since the past couple of decades, online social networks
deeply affect our lives, e.g., in terms of the information we
receive (Bakshy et al| (2012))), the technology we adopt
(Bandiera and Rasul| (2006)), the opinion we have (Hall
et al.| (2018])), and so on.

While there has been a coming-together of researchers
from different disciplines to advance our understanding
of the phenomena that take place on online social net-
works, these platforms continuously evolve into new forms.
Compared to those that flourished in the first decade of
the 21%¢ century, e.g., Facebook and LinkedIn, today’s
most popular platforms are directed networks that do
not necessarily require friendships to be mutual. Rather
than merely connecting to their real-life contacts, users
of Twitter, Instagram, or TikTok prefer to use the inte-
grated search engines to explore the content, e.g., tweets,
pictures, or videos, generated by unknown peers. By doing
so, they tend to become followers of real-life strangers, and
to create interest-based communities that revolve around
influential users that share the most interesting content.

The possibility of reaching wide audiences (way beyond
real-life friends) has favoured the emergence of the so-
called new influencers (Gillin| (2007))), individuals who
rapidly gain popularity by focusing on creating attractive
User-Generated Content (UGC). This trend has deeply
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influenced consumers’ and companies’ behavior in markets
to the point that more than 70% of US businesses engaged
Instagram influencers to promote their products in 201

Given the potentially profound impacts of the UGC-based
online social platforms on, e.g., information spreading, it is
of paramount importance to understand the statistical fea-
tures of these networks, especially in relation to the most
influential individuals and their UGC. Here, we report
some of the most relevant findings related to our recent
publication, |Pagan et al.| (2021, in which we proposed a
simple yet predictive network formation mechanism (i.e.,
a random graph model) based on the quality of the UGC.
In our original work, we found empirical evidence from
a Twitter data-set that the formation process is a result
of the individuals’ continuous search for better quality
UGC, measured by the alignment with the follower’s in-
terests, i.e., homophily (McPherson et al.| (2001))), and its
goodness. Based on this sociological evidence, we assume
agents are endowed with an attribute defining the quality
of their UGC, and they decide their followees according
to an utilitarian and meritocratic principle: they aim at
optimizing the quality of the content they receive.

We analytically and numerically study the properties of
the resulting networks, with a particular focus on the
most influential nodes, i.e., the users with the greatest
number of followers. Among other results, we observe
that the in-degree distribution satisfies the well-known
scale-free property (Barabasi and Albert| (1999))), but we
also discover a specific pattern: the highest quality node
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expects to have twice (respectively, three times) as many
followers as the second (respectively, third) highest, and so
on. This empirical regularity goes under the name of Zipf’s
law (Zipf] (2016])), and it has been found in many real-
world systems (Gabaix! (2009)). Interestingly, we show that
the result is robust against the effect of recommendation
systems (which increase the visibility of popular nodes).

In our original work (Pagan et al.|(2021)), we also show
that our quality-based model predicts many interesting
real-world social networks features: small diameter, small
(but not vanishing) clustering coefficient, a significant
overlap in the followers’ sets as a result of the homophily
that characterizes agents with similar interests, and a
small maximum out-degree, which is consistent with the
limited time users spend on these platforms. Furthermore,
we validated the model predictions against three data-
sets collected from Twitch, a popular platform for online
gamers. This extended abstract summarizes part of our
results.

2. MODEL

To formalize our quality-based model, we consider N > 2
agents whose UGC revolves around a specific common
interest, e.g., a particular traveling destination. Each actor
i is endowed with an attribute ¢;, drawn from a probability
distribution, e.g., uniform, normal, exponential distribu-
tion, that describes the average quality of i’s content. As
will be manifested later, our model predictions are inde-
pendent of the numerical representation of these qualities,
which could be somehow subjective and arbitrary. Instead,
in our model, only the ordering of the individual qualities
matters.

The quality g; can be seen as the realization of a Bernoulli
random variable @); describing the probability of followers
liking agent ¢’s content. Higher values of ¢; are then
associated with better UGC. A value of zero, instead, can
be used to model users that do not produce any UGC.
With this setup, the model can be directly applied to the
platforms, e.g., YouTube or Twitch, in which users can be
partitioned into two classes, i.e., the content creators and
their followers.

Then, we consider the unweighted directed network among
these agents. We denote the directed tie from i to j
with a;; € {0,1}, where a;; = 1 means ¢ follows j,
and we assume that each agent ¢ can only control her
followees a;; (excluding self-loops) but not her followers
aj;. We then consider a sequential dynamical process
starting from the empty network, where at each time-step
t € {1,2,...} each actor ¢ picks another distinct actor
j, chosen randomly from a probability distribution on
{1,...,i—1,i+1,...,N}, and decides whether to follow
j or not. To reflect the meritocratic principle that emerged
from our Twitter data-set, we base the tie formation
decision on the comparison between i’s current followees’
and j’s qualities. Let the payoff function of agent ¢ measure
the maximum quality received by ¢, i.e.,
max

Vi(t) := -, 1
()= max o 1)

where FPU"(t) := {7, s.t. a;;(t) = 1} denotes the set of i’s
followees at time ¢. According to a utility maximization

principle, we define the update process through the fol-
lowing rule:

aij(t),

meaning that ¢ will add j in her followees’ set if j provides
better quality content compared to i’s current followees.
Note that, if 4 finds a node that already belongs to her set
of followees, the connection will not be re-discussed. While,
intuitively, this may lead to a large out-degree, in |Pagan
et al.|(2021) we show that this is not the case because in the
payoff (1) the cost of good-quality connections is infinitely
low, but the cost of poor-quality ones is infinitely high.

ag(t+1) = { (2)

otherwise,

A natural question that arises when defining a dynamical
process is whether it reaches or not an equilibrium. In
Pagan et al| (2021) we show that an equilibrium state is
reached almost surely. Without loss of generality (see also
(Pagan et al.|(2021]))), we re-order the agents by decreasing
quality, i.e., g1 > g2 > --- > qn. In this way, agent 1 is
the top-quality agent, agent 2 is the second best, and so
on. According to our dynamics, any node i > 1 creates
new links towards increasingly-quality agents, until finding
the top-quality node 1. Likewise, node 1 creates new
links until finding the second-highest quality agent, node
2. If the probability distribution function that rules the
meeting process is such that each agent eventually meets
all the other agents almost surely, then convergence to an
equilibrium state is guaranteed once every agent has found
agent 1 (and agent 1 has found agent 2), see Theorem 1 in
Pagan et al|(2021)). Clearly, a uniform distribution for the
meeting process satisfies the above assumption, because
the probability that an agent does not find her best target

N—=2

t
within ¢ time-steps is equal to (N—_) — 0, as t = oo.

1
Depending on the platform which is considered, though,
one might expect that the probability of finding a node j
depends linearly on the (current) in-degree of j, in a way
similar to the preferential attachment process by |[Barabasi
and Albert| (1999). In other words, the popular users are
suggested more frequently by the recommendation systems
built in the search engines. Note, though, that contrary to
the preferential attachment mechanism, in our model the
link formation depends on the quality of the user according
to the utilitarian and meritocratic principle defined in (2).

To cope with different degrees of recommendation and to
understand their impact on the final network structure, we
define a parameter o € [0,1] which controls the amount
of “preferential attachment” that is introduced in the
meeting process. Thus, the probability that individual ¢
meets individual j # ¢ at time step ¢ reads as:

diP(t) +1
#, with probability «
P[M;;] = Zaféi 7 () +1
m7 Wlth probablhty 1-— a,

(3)
where d;.“(t) denotes the in-degree of node j at time-
step t. Clearly, if @« = 0, the probability is uniform
and independent on the network evolution. On the other
extreme, when o = 1, the probability depends over time,
and grows proportional to the in-degree (i.e., popularity)
of the target node.
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Fig. 1. Given a network of N = 1000 agents, the plot on the left shows the probability density functions of the in-degree
with the expected value, as a function of the quality-rank. On the right, the average probability density function is
plotted: in gray, the theoretical result for N = 1000 agents is shown; in orange, we plot the numerical distribution
resulting from 1000 simulations upon reaching equilibrium. In black, the numerical distribution is shown after using
the standard logarithmic binning of data. Finally, we fit the numerical data with a power-law using the algorithm
in [Clauset et al. (2009) (blue) and with a log-normal distribution (purple).

3. ANALYSIS

One of the most relevant aspects of social network analysis
is the in-degree distribution. In fact, while other measures
of centrality, e.g., closeness, betweenness, or eigenvector
centrality, are also important for information diffusion, in-
degree centrality immediately quantifies the reach of the
content generated by a user in an online social network.
For this reason, in the following theorem we study the
in-degree probability density function of a network in
equilibrium, under the assumption of o = 0, i.e., uniform
distribution of the meeting process. Importantly, the re-
sults are drawn as a function of the quality-rank ¢ (for the
proof, see Corollary 1 in [Pagan et al.|(2021)).

Theorem 1. Under the assumption of a uniform meeting
process (a = 0), at equilibrium the probability that node
i is followed by node j # i is:

1
- , if j <,
t—o0 o .
e if 7 >0,
i
(4)
and the expected in-degree of node ¢ reads as:
N-1, ifi=1,
()

—, otherwise.

According to the above result, at equilibrium the best
content provider, node 1, receives N — 1 connections, node
2 has N/2 expected followers, node 3 has N/3, and so on.
The result can be intuitively reached with the following
plausible reasoning: any user that has not yet found node
1 nor node 2, has the same probability of finding any of
the two in the coming time-step. In expectation, in half of

the cases, the user will become a follower of node 2 before
finding and following (necessarily) node 1. In the other half
of the case, she will find node 1 before having seen node 2.
Thus, the expected number of followers of node 2 is half
of the expected number of followers of node 1.

Such a regular scaling property is called Zipf’s law
(2016))) and it is illustrated in Fig. 1 (right), where we
plot the expected in-degree of each node as a function
of its quality-rank, together with the probability density
functions. In log-log scale, the expected in-degree perfectly
matches a line with coefficient —1. Real-world evidence of
Zipf’s law has been reported in many systems, including

firm sizes (Axtell| (2001) or city sizes (Gabaix| (2009))),

and its peculiarity and apparent ubiquity have triggered
numerous efforts to explain its origins )
Despite being a discrete distribution, Zipf’s law is often
associated with the continuous Pareto distribution, better
known as power-law (Adamic| (2000))). However, as noticed
in |Cristelli et al| (2012), there is more than a power-
law in Zipf: although a power-law distribution is certainly
necessary to reproduce the asymptotic behavior of Zipf’s
law at large values of rank i, any random sampling of
data does not lead to Zipf’s law, and the deviations are
dramatic for the largest objects. In particular, Zipf’s law
emphasizes the relation among the top-ranking elements,
which essentially correspond to the most important nodes,
i.e., the network influencers. The difference with a Pareto
distribution becomes evident when considering our in-
degree probability density function (derived by computing
the average of each user’s probability density function):

N
in,* 1 in,*
Pld™ :d]:NZP[di =d. (6)
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Fig. 2. Numerical results of 1000 simulations with 1000 nodes for a mixed process (with 50% probability, the potential
followee is chosen from a uniform distribution, and with the remaining 50% from a preferential attachment
mechanism). On the left, the in-degree probability density functions, as a function of the quality rank. On the
right, the average in-degree distribution function and corresponding fits.

As shown in Fig. 1 (right), the theoretical in-degree prob-
ability density function follows a power-law of coefficient
& = —2.06 £ 0.003 (p — value < 107%), which is not
surprising since the expected in-degree is distributed ac-
cording to a Zipf’s law (see again the discussion in
(2000))). However, in our distribution we can recognize
the typical Zipf’s sequence, which highlights the relation
between the network influencers. We refer to our original
work for additional analysis and fitting comparison.

To understand the impact of the recommendation systems
on the meritocratic principle, in Fig. 2 we report the
numerical results obtained with o = 0.5. Compared to the
uniform distribution scenario in Fig. 1 (left), the variance
of the in-degree probability distribution of each agent
is increased. In this scenario, it becomes possible that
some agents get an initial (i.e., in the early stage of the
network formation process) advantage (or disadvantage,
purely by chance), which gets reinforced by the (mixed)
preferential attachment mechanism. Yet, it is remarkable
that the correlation between quality and followers persists
(on average): the higher the quality, the higher the average
number of followers. Even more importantly, the Zipf’s
relation is robust under mixed preferential attachment
based meeting process (e.g., recommendation systems).

4. CONCLUSION

Many of today’s most popular online social networks
are heavily based on User-Generated Content. Based on
empirical evidence from longitudinal Twitter data, we
proposed a meritocratic quality-based network formation
model in which actors aim at optimizing the quality of the
received content. We studied the in-degree distribution of
the resulting networks, and we found that the meritocratic
principle leads to a Zipf’s law of the expected in-degree as
a function of the quality ranking. Remarkably, the result
persists notwithstanding the effect of recommendation
systems.
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